Computational Electrodynamics Methods

Author:

Harris Nadine1,Ausman Logan K.1,McMahon Jeffrey M.12,Masiello David J.3,Schatz George C.1

Affiliation:

1. Northwestern University Department of Chemistry, International Institute for Nanotechnology, 2145 Sheridan Road, Evanston, Illinois, 60208-3113 USA

2. Argonne National Laboratory, Center for Nanoscale Materials 9700 S. Cass Avenue, Argonne, Illinois, 60439 USA

3. University of Washington Department of Chemistry, Box 351700, Seattle, Washington, 98195-1700 USA

Abstract

This chapter has focused on a number of commonly used analytical and numerical electrodynamics methods that can be used to model the optical properties of plasmonic nanostructures, with emphasis on nonconventional applications of these methods to problems that have been recently been of interest in the surface spectroscopy field, especially surface-enhanced Raman scattering (SERS). A dipole reradiation (DR) methodology was added to the analytical approach of Mie theory to DR effects in SERS intensities, which is a more accurate expression for the electromagnetic enhancement theory than the commonly used plane-wave (PW) enhancement expression. We show that DR/PW differences can be significant for certain choices of detector locations due to interference and multipole effects, and generally the DR enhancements are smaller than PW. The numerical 2D finite-difference time-domain (FDTD) method was modified through the incorporation of the hydrodynamic Drude model dielectric constant, enabling the calculation of spatially nonlocal dielectric responses for arbitrarily shaped nanostructures. Nonlocal effects become important when structural features extend below around 10 nm where the dielectric constant becomes a function of both the wavevector and the frequency. The importance of including nonlocal effects was demonstrated by calculating the optical response of cylindrical and triangular nanowires. The discrete dipole approximation (DDA) provides an alternative method for determining nanoparticle optical properties that uses a similar grid to FDTD, but with different convergence characteristics. We show that for cube-shaped particles the two methods have similar convergence behavior, but accuracy is a problem for DDA, while representing the frequency dependence dielectric constant is a problem for FDTD. A general many-body formalism describing plasmon-enhanced linear spectroscopies was developed by linking the numerical DDA method with electronic structure theory based on Q-Chem. This methodology allows the calculation of the linear-response and scattering properties between a molecule, which is described quantum mechanically, interacting with a classically described metal nanostructure. To demonstrate this formalism the linear response and scattering of a pyridine–Ag spheroidal system was calculated as a function of excitation energy and aspect ratio.

Publisher

The Royal Society of Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3