Imaging in Scaffolds

Author:

Martinez Jocelyn1,Wang Nianchao1,Hu Linghao1,Cardona Benitez Elizabeth1,Nguyen Uyen1,Martinez Ricardo1,Walsh Alex J.1

Affiliation:

1. Department of Biomedical Engineering, Texas A&M University 3120 TAMU College Station TX 77843 USA walshaj@tamu.edu

Abstract

Imaging of three-dimensional (3D) tumor scaffolds, engineered or naturally-derived tissue architectures, provides spatial, molecular, and phenotypic information for the extracellular environment and cells. Traditional optical techniques used to image two-dimensional cell cultures rely on light transmission through the sample. However, absorption and scattering by 3D tumor scaffolds impede light transmission. Appropriate sample preparation such as tissue clearing can reduce scattering and improve imaging depth. Epi-illumination, an imaging technique in which light is collected in the backward direction, combined with microscopy techniques with optical sectioning, such as multiphoton fluorescence, allow imaging of scaffolds with high 3D spatial resolution. Optical microscopy can evaluate fluorescent probes targeted to a specific area or molecule of interest, autofluorescent properties of cells and the extracellular matrix, and additional tissue properties such as light scattering or absorption. In addition to optical imaging, MRI can be used to image 3D tumor scaffolds for applications requiring imaging depths beyond optical limits. MRI of implanted tumor scaffolds provide assessment of microenvironment factors including tumor vascularization, pH, and hypoxia. Quantitative analysis of images provides spatial and heterogeneity information of both the extracellular matrix and cellular components of 3D tumor scaffolds to reveal insights into the tumor microenvironment.

Publisher

The Royal Society of Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3