A conversion-type electrochemical artificial synapse for plasticity modulation and dendritic application
Author:
Affiliation:
1. Institute of Photoelectronic Thin Film Devices and Technology
2. Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin
3. College of Electrical Information and Optical Engineering
4. Nankai University
5. Tianjin 300350
Abstract
A conversion-type electrochemical artificial synapse exhibits potential applications for memory enhancement and dendritic integration; ultra-high sensitivity (3 mV) and extremely low-power consumption (32 fW) could be achieved.
Funder
Natural Science Foundation of Tianjin City
Nankai University
Higher Education Discipline Innovation Project
Publisher
Royal Society of Chemistry (RSC)
Subject
Materials Chemistry,General Materials Science
Link
http://pubs.rsc.org/en/content/articlepdf/2021/QM/D0QM00371A
Reference50 articles.
1. Neuroscience-Inspired Artificial Intelligence
2. Recent Progress in Three‐Terminal Artificial Synapses: From Device to System
3. Recent Advances in Transistor‐Based Artificial Synapses
4. Nanoionics‐Enabled Memristive Devices: Strategies and Materials for Neuromorphic Applications
5. Low‐Power, Electrochemically Tunable Graphene Synapses for Neuromorphic Computing
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Thermally and Mechanically Stable Perovskite Artificial Synapse as Tuned by Phase Engineering for Efferent Neuromuscular Control;Nano Letters;2024-07-18
2. Defective Engineering Tuning the Analog Switching Linearity and Symmetry of Two‐Terminal Artificial Synapse for Neuromorphic Systems;Advanced Functional Materials;2023-09-15
3. Mixed-Dimensional Nanoparticle–Nanowire Channels for Flexible Optoelectronic Artificial Synapse with Enhanced Photoelectric Response and Asymmetric Bidirectional Plasticity;Nano Letters;2023-09-12
4. Emerging Iontronic Neural Devices for Neuromorphic Sensory Computing;Advanced Materials;2023-08-02
5. A conversion-type lithium artificial synapse with dispersed nano-silica fabricated by UV-curing method;Nanotechnology;2022-10-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3