An on-chip microfluidic pressure regulator that facilitates reproducible loading of cells and hydrogels into microphysiological system platforms
Author:
Affiliation:
1. Department of Biomedical Engineering
2. University of California
3. Irvine
4. USA
5. Department of Molecular Biology and Biochemistry
6. Washington University in St. Louis
7. Saint Louis
8. Department of Mechanical and Aerospace Engineering
Abstract
An on-chip microfluidic pressure regulator design facilitates reproducible hydrogel loading into microphysiological platforms while maintaining well-controlled and non-bursting gel interfaces.
Funder
National Institutes of Health
Publisher
Royal Society of Chemistry (RSC)
Subject
Biomedical Engineering,General Chemistry,Biochemistry,Bioengineering
Link
http://pubs.rsc.org/en/content/articlepdf/2016/LC/C5LC01563D
Reference23 articles.
1. User-friendly 3D bioassays with cell-containing hydrogel modules: narrowing the gap between microfluidic bioassays and clinical end-users' needs
2. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging
3. Accelerating drug discovery via organs-on-chips
4. Microfluidic organs-on-chips
5. Microengineered physiological biomimicry: Organs-on-Chips
Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Differential osteo-specific invasion of patient-derived cancer cells in a microfluidic co-culture model;Chemical Engineering Journal;2024-06
2. Dissolvable temporary barrier: a novel paradigm for flexible hydrogel patterning in organ-on-a-chip models;Bio-Design and Manufacturing;2024-02-23
3. Experimental study and numerical simulation of water-sand two-phase flow in fracture network;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2024-01-04
4. On-chip modeling of physiological and pathological blood-brain barrier microenvironment for studying glial responses to neuroinflammation;Nano Today;2023-10
5. Establishing a Physiologic Human Vascularized Micro-Tumor Model for Cancer Research;Journal of Visualized Experiments;2023-09-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3