Highly efficient dye-sensitized solar cells based on a ruthenium sensitizer bearing a hexylthiophene modified terpyridine ligand
Author:
Affiliation:
1. Department of Industrial Chemistry
2. Faculty of Engineering
3. Tokyo University of Science
4. Tokyo
5. Japan
Abstract
An extremely high conversion efficiency (11.9%) can be achieved for a dye-sensitized solar cell with a ruthenium sensitizer (TUS-38) by optimizing the dye-adsorption conditions and the electrolyte composition.
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2016/TA/C5TA10393B
Reference66 articles.
1. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films
2. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes
3. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells
4. Recent Advances in Sensitized Mesoscopic Solar Cells
5. Panchromatic engineering for dye-sensitized solar cells
Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Steric Effects on the Photovoltaic Performance of Panchromatic Ruthenium Sensitizers for Dye-Sensitized Solar Cells;ACS Applied Materials & Interfaces;2024-03-04
2. Hydrogen peroxide assisted synthesis of fluorescent carbon nanoparticles from teak leaves for dye-sensitized solar cells;RSC Sustainability;2024
3. Biocompatibility of ionic liquid tagged terpyridine complexes with potent biological activity;Chemical Physics Impact;2023-12
4. Highly Efficient and Stable Molecular-Based TiO2 Photoanodes for Photoelectrochemical Water Splitting Achieved by Pyridyl Anchoring Technique;ACS Catalysis;2023-10-05
5. Synthesis of a New Dinuclear Cu(I) Complex with a Triazine Ligand and Diphenylphosphine Methane: X-ray Structure, Optical Properties, DFT Calculations, and Application in DSSCs;Inorganics;2023-09-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3