The challenges of solar hydrogen in chemical industry: how to provide, and how to apply?

Author:

Setoyama Tohru123,Takewaki Takahiko123,Domen Kazunari123,Tatsumi Takashi123

Affiliation:

1. Mitsubishi Chemical Group

2. Science and Technology Research Center

3. Japan

Abstract

Curbing anthropogenic CO2 emissions is one of the most important issues in the 21st century in order to mitigate climate change. Although the installation of solar cells for energy supply is in progress and these are becoming popular as an efficient use of sunlight, they are mostly used by energy-related industrial sectors. In the common chemical industry, various fossil resources are used to emit a huge amount of CO2. We believe that the chemical industry can make an effort to curb CO2 emissions by changing its resources to more environmentally benign ones. Solar hydrogen (hydrogen obtained by catalytic water splitting under sunlight) is an ideal sustainable resource and can be utilized as a chemical resource via combination with CO2. The 10 year program named “Artificial Photo Synthetic Chemical Process (ARPChem)” has been in progress under the support of the New Energy and Industrial Technology Development Organization (NEDO) in Japan since 2012. We introduce the strategy of ARPChem and the progress of the investigations including water splitting, hydrogen/oxygen separation, and olefin synthesis from solar hydrogen and CO2. We also argue that a realistic strategy to actualize “ARPChem” technologies in the society would be their combination with better fossil resources such as lower alkanes from a Life Cycle Assessment (LCA) point of view.

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry

Reference41 articles.

1. http://report.mitigation2014.org/spm/1pccwg3ar5 summary for policymaker approved pdf

2. http://www.epa.gov./climatechange/ghgemissions/

3. http://unfcoc.int/parisagreement/items/9485.php

4. World Energy Outlook, IEA Publications, ch. 2, p. 85

5. http://www.iea.org/.../technologyroadmapcarboncaptureandstrage.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3