Machine learning approaches for elucidating the biological effects of natural products
Author:
Affiliation:
1. Key Laboratory of Medicinal Chemistry for Natural Resource
2. Ministry of Education
3. Yunnan Research & Development Center for Natural Products
4. School of Chemical Science and Technology
5. Yunnan University
Abstract
This review presents the basic principles, protocols and examples of using the machine learning approaches to investigate the bioactivity of natural products.
Funder
National Natural Science Foundation of China
Publisher
Royal Society of Chemistry (RSC)
Subject
Organic Chemistry,Drug Discovery,Biochemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2021/NP/D0NP00043D
Reference129 articles.
1. Counting on natural products for drug design
2. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019
3. The re-emergence of natural products for drug discovery in the genomics era
4. The potential role of in silico approaches to identify novel bioactive molecules from natural resources
5. NMR signal processing, prediction, and structure verification with machine learning techniques
Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Natural product databases for drug discovery: Features and applications;Pharmaceutical Science Advances;2024-12
2. Exploration of novel human neutrophil elastase inhibitors from natural compounds: Virtual screening, in vitro, molecular dynamics simulation and in vivo study;European Journal of Pharmacology;2024-11
3. Anti‐inflammatory effects of natural products from vitamin C‐rich fruits;Food Frontiers;2024-09-04
4. Advances in machine learning screening of food bioactive compounds;Trends in Food Science & Technology;2024-08
5. Herb-CMap: a multimodal fusion framework for deciphering the mechanisms of action in traditional Chinese medicine using Suhuang antitussive capsule as a case study;Briefings in Bioinformatics;2024-07-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3