Simple construction of core–shell MnO2@TiO2 with highly enhanced U(vi) adsorption performance and evaluated adsorption mechanism
Author:
Affiliation:
1. MOE Key Laboratory of Resources and Environmental Systems Optimization
2. College of Environmental Science and Engineering
3. North China Electric Power University
4. Beijing 102206
5. PR China
Abstract
Simple construction of core–shell MnO2@TiO2 with highly enhanced U(vi) adsorption performance and evaluation of its adsorption mechanism.
Funder
National Natural Science Foundation of China
Publisher
Royal Society of Chemistry (RSC)
Subject
Inorganic Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2019/QI/C8QI01379A
Reference59 articles.
1. N, P, and S Codoped Graphene-Like Carbon Nanosheets for Ultrafast Uranium (VI) Capture with High Capacity
2. Efficient removal of U(vi) from simulated seawater with hyperbranched polyethylenimine (HPEI) covalently modified SiO2 coated magnetic microspheres
3. U(VI) Adsorption to Heterogeneous Subsurface Media: Application of a Surface Complexation Model
4. A strategically designed porous magnetic N-doped Fe/Fe3C@C matrix and its highly efficient uranium(vi) remediation
Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advanced MXene-based materials for efficient extraction of uranium from seawater and wastewater;Science of The Total Environment;2024-09
2. Highly efficient and selective capture of uranium from groundwater by using an ultrathin 2D MOF nanosheet with pocket-like cavities;Separation and Purification Technology;2024-08
3. Advanced quasi-2D amorphous TiOx-Au photocatalyst: Harnessing defects and carriers transport to boost visible-light organic pollutants degradation;Surfaces and Interfaces;2024-02
4. The preparation of spherical Dopamine/Carbon for the efficient removal of uranium;Journal of Molecular Liquids;2024-02
5. Design and investigation of photoelectrochemical water treatment using self-standing Fe3O4/NiCo2O4 photoanode: In-situ H2O2 generation and fenton-like activation;Chemical Engineering Journal;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3