Reaction and Reactor Engineering

Author:

Lauwaert Jeroen1,Thybaut Joris W.2,Goguet Alexandre3,Hardacre Christopher4,Ola Oluwafunmilola5,Maroto-Valer Mercedes5

Affiliation:

1. Ghent University, Industrial Catalysis and Adsorption Technology Valentin Vaerwijckweg 1 9000 Ghent Belgium

2. Ghent University, Laboratory for Chemical Technology Technologiepark 914 9052 Ghent Belgium Joris.Thybaut@UGent.be

3. Queen’s University Belfast, CenTACat, School of Chemistry and Chemical Engineering David Keir Building, Stranmillis Road Belfast BT9 5AG UK a.goguet@qub.ac.uk

4. The University of Manchester, School of Chemical Engineering & Analytical Science, The Mill (C15) Sackville Street Manchester M13 9PL UK c.hardacre@manchester.ac.uk

5. Centre for Innovation in Carbon Capture and Storage (CICCS), School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK M.Maroto-Valer@hw.ac.uk

Abstract

Chemical engineering aims, on the one hand, at simulating and predicting phenomena with respect to chemical reactions, such as intrinsic reaction kinetics, mass transport, sorption effects, thermodynamic and hydrodynamic phenomena and, on the other hand, at the design, construction, and optimization of the corresponding reactors in which these reactions are performed. The present chapter starts with explaining how intrinsic reaction rates of chemical transformations occurring on a heterogeneous catalyst surface may be disguised by mass and heat transfer phenomena and how the occurrence of such limitations can be diagnosed. Subsequently, adsorption phenomena are described and it is explained how to account for them in a kinetic model. The third section of this chapter comprises a strategy to extrapolate gas phase kinetics towards liquid or three-phase reactions envisaging the up-scaling from ideal laboratory scale conditions to realistic commercial applications. Next, the focus moves from reaction towards reactor engineering. First, the traditional reactor types, i.e., batch, semi-batch, plug flow, and continuous stirred tank reactors, are discussed. Subsequently, microreactors, which are characterized by a much larger surface-to-volume ratio and, hence, exhibit an enhanced mass and heat transfer, are discussed. Finally, various methods of energy input are reported. Some specific reactor types such as monolith and membrane reactors, which are able to dramatically decrease the pressure drop, are discussed in more detail in the fifth section. The final section of this chapter aims at reactor and process design. It starts with a discussion on the hierarchical design strategy of chemical processes. Subsequently, reactor selection based on the specific boundaries of the indented application is addressed. The chapter wraps up with a discussion on the phenomena that should be accounted for while designing the selected reactor, i.e., capillary condensation, the catalyst wetting efficiency, the flow regime, and axial and radial dispersion.

Publisher

The Royal Society of Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3