High-throughput screening and literature data-driven machine learning-assisted investigation of multi-component La2O3-based catalysts for the oxidative coupling of methane

Author:

Nishimura Shun1ORCID,Le Son Dinh1ORCID,Miyazato Itsuki2,Fujima Jun2,Taniike Toshiaki1,Ohyama Junya3ORCID,Takahashi Keisuke2ORCID

Affiliation:

1. Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Japan

2. Department of Chemistry, Hokkaido University, N-10 W-8, Sapporo 060-0810, Japan

3. Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan

Abstract

Unique 30 types of multi-component La2O3-based catalysts for oxidative coupling of methane were discovered in 75 types of selected catalysts based on high-throughput screening and literature datasets with multi-output machine learning approaches.

Funder

Japan Science and Technology Agency

Publisher

Royal Society of Chemistry (RSC)

Subject

Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3