Crystal lattice distortion in ultrathin Co(OH)2nanosheets inducing elongated Co–OOHbonds for highly efficient oxygen evolution reaction
Author:
Affiliation:
1. State Key Laboratory of Applied Organic Chemistry (SKLAOC)
2. The Key Laboratory of Catalytic Engineering of Gansu Province
3. College of Chemistry and Chemical Engineering
4. Lanzhou University
5. Lanzhou
Abstract
The highly efficient OER performance of the ultrathin cobalt hydroxides nanosheets is due to the elongated Co–OOHbonds generated from crystal lattice distortion, which can serve as the efficiently catalytic active sites.
Publisher
Royal Society of Chemistry (RSC)
Subject
Pollution,Environmental Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2017/GC/C7GC02543B
Reference68 articles.
1. Opportunities and challenges for a sustainable energy future
2. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
3. Solar Water Splitting Cells
4. Electrocatalyst approaches and challenges for automotive fuel cells
5. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes
Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Unraveling the Dynamic Reconstruction of Active Co(IV)‐O Sites on Ultrathin Amorphous Cobalt‐Iron Hydroxide Nanosheets for Efficient Oxygen‐Evolving;Small;2024-08-19
2. Composite Nanoarchitectonics of Co3O4 Nanopolyhedrons with N-Doped Carbon and Carbon Nanotubes for Alkaline Oxygen Evolution Reaction;Catalysis Letters;2024-02-29
3. Accordion-like Co-MOF derived heterostructured Co/CoP@PNC as highly efficient electrocatalyst for alkaline hydrogen evolution reaction;International Journal of Hydrogen Energy;2024-01
4. Exploring the potential of cobalt hydroxide and its derivatives as a cost-effective and abundant alternative to noble metal electrocatalysts in oxygen evolution reactions: a review;Sustainable Energy & Fuels;2024
5. Heterogeneous ultra-thin FeCo-LDH@Co(OH)2 nanosheets facilitated electrons transfer for oxygen evolution reaction;Chemical Engineering Journal;2023-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3