Strong-field-induced wave packet dynamics in carbon dioxide molecule

Author:

Rudenko Artem12345,Makhija Varun12345,Vajdi Aram12345,Ergler Thorsten678,Schürholz Markus678,Kushawaha Rajesh K.12345,Ullrich Joachim678910,Moshammer Robert678,Kumarappan Vinod12345

Affiliation:

1. J.R Macdonald Laboratory

2. Department of Physics

3. Kansas State University

4. Manhattan

5. USA

6. Max-Planck-Institut für Kernphysik

7. 69117 Heidelberg

8. Germany

9. Physikalisch-Technische Bundesanstalt

10. 38116 Braunschweig

Abstract

Temporal evolution of electronic and nuclear wave packets created in strong-field excitation of the carbon dioxide molecule is studied employing momentum-resolved ion spectroscopy and channel-selective Fourier analysis. Combining the data obtained with two different pump-probe set-ups, we observed signatures of vibrational dynamics in both, ionic and neutral states of the molecule. We consider far-off-resonance two-photon Raman scattering to be the most likely mechanism of vibrational excitation in the electronic ground state of the neutral CO2. Using the measured phase relation between the time-dependent yields of different fragmentation channels, which is consistent with the proposed mechanism, we suggest an intuitive picture of the underlying vibrational dynamics. For ionic states, we found signatures of both, electronic and vibrational excitations, which involve the ground and the first excited electronic states, depending on the particular final state of the fragmentation. While our results for ionic states are consistent with the recent observations by Erattupuzha et al. [J. Chem. Phys.144, 024306 (2016)], the neutral state contribution was not observed there, which we attribute to a larger bandwidth of the 8 fs pulses we used for this experiment. In a complementary measurement employing longer, 35 fs pulses in a 30 ps delay range, we study the influence of rotational excitation on our observables, and demonstrate how the coherent electronic wave packet created in the ground electronic state of the ion completely decays within 10 ps due to the coupling to rotational motion.

Funder

U.S. Department of Energy

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3