Transfer learning of memory kernels for transferable coarse-graining of polymer dynamics
Author:
Affiliation:
1. Department of Mechanical Engineering
2. University of Wisconsin-Madison
3. Madison
4. USA
5. Department of Industrial and Systems Engineering
6. Physical Sciences Division
7. Pacific Northwest National Laboratory
8. Richland
Abstract
The present work concerns the transferability of coarse-grained (CG) modeling in reproducing the dynamic properties of the reference atomistic systems across a range of parameters.
Funder
National Science Foundation
Publisher
Royal Society of Chemistry (RSC)
Subject
Condensed Matter Physics,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2021/SM/D1SM00364J
Reference75 articles.
1. Coarse-Graining Methods for Computational Biology
2. Coarse-Grained Protein Models and Their Applications
3. Coarse-graining simulation approaches for polymer melts: the effect of potential range on computational efficiency
4. Resolving Dynamic Properties of Polymers through Coarse-Grained Computational Studies
5. A Review of Multiscale Computational Methods in Polymeric Materials
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Toward diverse polymer property prediction using transfer learning;Computational Materials Science;2024-09
2. Accurate Memory Kernel Extraction from Discretized Time-Series Data;Journal of Chemical Theory and Computation;2024-04-11
3. Chemically Specific Systematic Coarse-Grained Polymer Model with Both Consistently Structural and Dynamical Properties;JACS Au;2024-03-13
4. Mobility, response and transport in non-equilibrium coarse-grained models;Journal of Physics A: Mathematical and Theoretical;2024-02-19
5. Machine Learning in Soft Matter: From Simulations to Experiments;Advanced Functional Materials;2024-01-31
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3