Towards highly efficient photoanodes: the role of carrier dynamics on the photoelectrochemical performance of InGaN/GaN multiple quantum well coaxial nanowires
Author:
Affiliation:
1. Department of Physics
2. Chonnam National University
3. Gwangju 500-757
4. Republic of Korea
5. Department of Physics and KI for the NanoCentury
6. Korea Advanced Institute of Science and Technology
7. Daejeon 305-701
Abstract
The carrier dynamics in highly active InGaN/GaN coaxial nanowire photoanodes were studied for photoelectrochemical water splitting applications that can provide deeper insight to enhance the photon-to-electron conversion efficiency.
Funder
National Research Foundation of Korea
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemical Engineering,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2015/RA/C5RA01374G
Reference26 articles.
1. Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode
2. Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting
3. Stable response to visible light of InGaN photoelectrodes
4. Photoelectrochemical water splitting and hydrogen generation by a spontaneously formed InGaN nanowall network
5. Ultrafast Carrier Dynamics in Nanostructures for Solar Fuels
Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Protecting and Enhancing the Photoelectrocatalytic Performance of InGaN Nanowires toward Nitrogen Reduction to Ammonia Synthesis;ACS Applied Energy Materials;2023-10-20
2. Insights on advanced substrates for controllable fabrication of photoanodes toward efficient and stable photoelectrochemical water splitting;Carbon Energy;2023-05-30
3. One-dimensional III-nitrides: towards ultrahigh efficiency, ultrahigh stability artificial photosynthesis;Journal of Materials Chemistry A;2023
4. Recent progress in group III-nitride nanostructures: From materials to applications;Materials Science and Engineering: R: Reports;2020-10
5. Modulating Surface/Interface Structure of Emerging InGaN Nanowires for Efficient Photoelectrochemical Water Splitting;Advanced Functional Materials;2020-09-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3