Xylene gas sensor based on Ni doped TiO2 bowl-like submicron particles with enhanced sensing performance
Author:
Affiliation:
1. State Key Laboratory on Integrated Optoelectronics
2. Jilin University
3. Changchun 130012
4. P. R. China
5. College of Electronic Science and Engineering
6. College of Instrumentation and Electrical Engineering
Abstract
Bowl-like TiO2 submicron particles prepared by electrospray technique were used to detect xylene gas and Ni element was added into TiO2 to improve the gas sensing performances.
Funder
National Natural Science Foundation of China
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemical Engineering,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2015/RA/C5RA01395J
Reference26 articles.
1. Xylene sensor using double-layered thin film and Ni-deposited porous alumina
2. Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures
3. Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors
4. Solid-state chemical synthesis of mesoporous α-Fe2O3 nanostructures with enhanced xylene-sensing properties
5. Preparation and Xylene-Sensing Properties of Co3O4Nanofibers
Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advancements in two-dimensional Ti3C2 MXene interfaced semiconductors for room temperature NO2 gas sensing: A review;Journal of Materials Science & Technology;2024-12
2. Strategies to detect xylene gas using chemoresistive gas sensors: An overview;Journal of Industrial and Engineering Chemistry;2024-11
3. Varying annealing temperature to enhance xylene vapor sensing performance of CuFe2O4 nanoparticles prepared by solvothermal method;Vacuum;2024-05
4. Branched ZnFe2O4 nanorods grown via chemical spray pyrolysis technique for chemiresistive xylene gas sensor;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2024-04
5. The influence of Fe loading on the optical and gas sensing characteristics of SnO2/ZnO heterostructures;Physica B: Condensed Matter;2023-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3