Transient, in situ synthesis of ultrafine ruthenium nanoparticles for a high-rate Li–CO2 battery
Author:
Affiliation:
1. Department of Materials Science and Engineering
2. University of Maryland
3. College Park
4. USA
5. College of Engineering and Applied Sciences
6. Nanjing University
7. Nanjing
8. China
9. Department of Chemistry and Biochemistry
Abstract
Ultrafine Ru nanoparticles anchored on freestanding activated carbon nanofibers with porous structure are synthesized as a high performing cathode for Li–CO2 batteries via a transient, in situ thermal shock method.
Funder
China Scholarship Council
Publisher
Royal Society of Chemistry (RSC)
Subject
Pollution,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2019/EE/C8EE03506G
Reference48 articles.
1. Preparing to Capture Carbon
2. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions
3. The O 2 -assisted Al/CO 2 electrochemical cell: A system for CO 2 capture/conversion and electric power generation
4. Progress in research on Li–CO2 batteries: Mechanism, catalyst and performance
5. Electrochemical CO2 Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution
Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Atomically dispersed Cu and Cr on N-doped hollow carbon nanocages for synergistic promotion of high-performance Li–CO2 batteries;Chemical Engineering Journal;2024-08
2. Approaching Splendid Catalysts for Li–CO2 Battery from the Theory to Practical Designing: A Review;Advanced Materials;2024-07-31
3. Ultrafine Ru nanoparticles anchored on N-doped mesoporous hollow carbon spheres as a highly efficient bifunctional catalyst for Li–CO2 batteries;Journal of Power Sources;2024-07
4. Electrospinning engineering of gas electrodes for high‐performance lithium–gas batteries;Carbon Energy;2024-06-19
5. Ultrafast In-Situ synthesis of flexible MoO3 anode in five seconds for High-Performance aqueous zinc ion hybrid capacitor;Chemical Engineering Journal;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3