3D flower-structured graphene from CO2 for supercapacitors with ultrahigh areal capacitance at high current density
Author:
Affiliation:
1. Department of Materials Science and Engineering
2. Michigan Technological University
3. Houghton
4. USA
5. University of Michigan
6. Ann Arbor
Abstract
3D cauliflower-fungus-like graphene (CFG) with hierarchical mesoporous-structure synthesized directly from CO2 exhibited an ultrahigh areal capacitance of 1.16 F cm−2 at a high current density and reached a high efficient-mass-loading of 11.16 mg cm−2. This solves a critical issue of sacrificing mass capacitance with increasing mass loading.
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2015/TA/C5TA01055A
Reference49 articles.
1. Carbon materials for the electrochemical storage of energy in capacitors
2. Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors
3. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon
4. A review of electrode materials for electrochemical supercapacitors
Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Rapid Synthesis of Hierarchical Cobalt Disulfide Nanostructures by Microwave-Assisted Hydrothermal Method for High Performance Supercapatteries;ACS Applied Electronic Materials;2024-05-20
2. Synthesis of Microscopic 3D Graphene for High‐Performance Supercapacitors with Ultra‐High Areal Capacitance;Small Methods;2024-04-28
3. Short-Range Ordered Porous Carbon Derived from Confined-Region Activation Strategy Exhibits Excellent High-Loading Performance in Supercapacitors;ACS Sustainable Chemistry & Engineering;2024-04-26
4. Bubble-Mediated Production of Few-Layer Graphene via Vapor–Liquid Reaction between Carbon Dioxide and Magnesium Melt;Materials;2024-02-15
5. Mechanistic insights into the roles of precursor content, synthesis time, and dispersive solvent in maximizing supercapacitance of N-rGO sheets;Journal of Alloys and Compounds;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3