Environmental distribution of the neurotoxin l-BMAA in Paenibacillus species

Author:

Nunn Peter B.1ORCID,Codd Geoffrey A.23

Affiliation:

1. School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK. Tel: +44(0)1483-812098

2. School of Life Sciences, University of Dundee, DD1 5EH, UK

3. School of Natural Sciences, University of Stirling, FK9 4LA, UK

Abstract

Abstract The environmental distribution of the neurotoxic amino acid, 3-N-methyl-2,3-diaminopropanoic acid (BMAA), first isolated in 1967, was initially believed to be limited to tropical and subtropical plants of the genus Cycas. The seeds of one such species, which had been used historically on the Pacific island of Guam as a foodstuff, had a reputation for neurotoxicity. Some 40 years later the amino acid was detected in terrestrial and aquatic cyanobacteria and in other aquatic organisms. Overlooked was the discovery of BMAA in peptides of bizarre structure that had been isolated in 1975 from Paenibacillus pulvifaciens during a search for antibiotics. More recently (2014), peptides of similar structure were isolated from Paenibacillus larvae; this organism is causative of American Foulbrood, a lethal disease of honeybee colonies. These are interesting chemical and environmental observations, but knowledge of the bacterial distribution of BMAA is limited to just these two species of Paenibacillus, while more than 200 Paenibacillus spp. are known. Paenibacillus spp. are ever present naturally in the environment and are used agriculturally; recent research reports that some species infect human foods – including cow's milk – and have been isolated from human body fluids. We wish to stimulate interest in the environmental distribution of the neurotoxic BMAA in Paenibacillus spp. by drawing together previously isolated streams of research and by proposing experimental approaches by which this matter might be resolved.

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3