We report an investigation of the self-assembly of patterns from functionalized gold nanoparticles (GNPs) by monitoring the process in situ by environmental scanning electron microscopy (ESEM) during both evaporation and condensation of the dispersant. As this method limits the choice of dispersants to water, GNPs functionalized with hydrophilic thiol ligands, containing poly(ethylene)glycol (PEG) groups, were used on a variety of substrates including pre-patterned ones. Particular emphasis was given to early stage deposition of GNPs, as well as redispersion and lift-off upon condensation of water droplets. ESEM presents a unique opportunity of directly imaging such events in situ. It was found that attractive interactions between the substrate and the GNPs are often stronger than expected once the particles have been deposited. The role of nickel perchlorate as a highly water-soluble additive was studied. It was found that entropically driven deposition of particles and decoration of surface features was enhanced in its presence, as expected.