Predicting the adsorption of organic pollutants on boron nitride nanosheets via in silico techniques: DFT computations and QSAR modeling

Author:

Wang Ya12345,Tang Weihao67895,Peng Yue12345ORCID,Chen Zhongfang10111213ORCID,Chen Jingwen67895ORCID,Xiao Zijun67895,Zhao Xiaoguang14155,Qu Yakun14155,Li Junhua12345ORCID

Affiliation:

1. State Key Joint Laboratory of Environment Simulation and Pollution Control

2. School of Environment

3. Tsinghua University

4. Beijing 100084

5. China

6. Key Laboratory of Industrial Ecology and Environmental Engineering (MOE)

7. School of Environmental Science and Technology

8. Dalian University of Technology

9. Dalian 116024

10. Department of Chemistry

11. University of Puerto Rico

12. San Juan

13. USA

14. SINOPEC Research Institute of Petroleum Processing (RIPP)

15. Beijing 100083

Abstract

Four quantitative structure–activity relationship (QSAR) models were developed for predicting the log K values of organic pollutants adsorbed onto boron nitride nanosheets in gaseous and aqueous environments.

Funder

National Key Research and Development Program of China

National Aeronautics and Space Administration

National Science Foundation

National Natural Science Foundation of China

Publisher

Royal Society of Chemistry (RSC)

Subject

General Environmental Science,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3