Machine learning reveals multiple classes of diamond nanoparticles
Author:
Affiliation:
1. Data61 CSIRO
2. Docklands
3. Australia
4. ANU Research School of Computer Science
5. Acton
Abstract
Unsupervised clustering and supervised classification of a diverse set of reconstructed, twinned and passivated diamond nanoparticles predict nine classes that have distinctly different characteristics and electronic properties.
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science
Link
http://pubs.rsc.org/en/content/articlepdf/2020/NH/D0NH00382D
Reference39 articles.
1. Combinatorial Materials Sciences: Experimental Strategies for Accelerated Knowledge Discovery
2. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
3. T. Lookman , F. J.Alexander and K.Rajan , Information science for materials discovery and design , Springer Series in Materials Science, Springer International Publishing , Switzerland , 2016
4. Atomistic calculations and materials informatics: A review
5. Perspectives on the Impact of Machine Learning, Deep Learning, and Artificial Intelligence on Materials, Processes, and Structures Engineering
Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Classification of battery compounds using structure-free Mendeleev encodings;Journal of Cheminformatics;2024-04-26
2. Reliable and explainable machine learning for charge transfer/atomic structure relationships of hydrogenated nanodiamonds;Diamond and Related Materials;2024-04
3. Insights into Nanodiamond from Machine Learning;Topics in Applied Physics;2024
4. Machine Learning Frontier Orbital Energies of Nanodiamonds;Journal of Chemical Theory and Computation;2023-04-13
5. Unsupervised machine learning discovers classes in aluminium alloys;Royal Society Open Science;2023-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3