Click Hydrogels for Biomedical Applications

Author:

Arkenberg Matthew R.1,Kim Min Hee2,Lin Chien-Chi2

Affiliation:

1. Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA

2. Department of Biomedical Engineering, Purdue School of Engineering & Technology Indiana University-Purdue University Indianapolis Indianapolis IN 46202 USA lincc@iupui.edu

Abstract

Hydrogels crosslinked by homopolymerization of single component acrylate/methacrylate terminated polymers (e.g., poly(ethylene glycol) diacrylate, or PEGDA) were once the dominant biomaterials in biomedical applications, including the encapsulation of therapeutic agents and biological molecules. However, accumulating evidence has revealed many disadvantages of homopolymerized hydrogels, including heterogeneity of the crosslinking that adversely impacted the bioactivity of the encapsulated molecules. As such, recent years have witnessed the expansive use of modular click chemistry for the crosslinking of multicomponent hydrogels, typically consisting of two or more functionally distinct macromolecular building blocks. This chapter provides an overview of the crosslinking and applications of multicomponent hydrogels, focusing on those crosslinked by strain-promoted alkyne–azide cycloaddition (SPAAC), Michael-type addition, Diels–Alder (DA) reactions, inverse electron-demand Diels–Alder (iEDDA), thiol–ene polymerizations, and imine/hydrazone/oxime click reactions. This chapter also summarizes information regarding the characteristics, advantages, and limitations of commonly used synthetic (e.g., PEG, poly(acrylate), poly(vinyl alcohol), etc.) and naturally-derived macromers (e.g., gelatin, hyaluronic acid, etc.) for forming multicomponent hydrogels. Finally, an overview is given on the applications of multicomponent hydrogels in drug delivery, biofabrication, and 3D/4D cell culture.

Publisher

The Royal Society of Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3