Microwave-augmented Carbon Capture

Author:

Ramanarayanan K. T.1,Shankar Krishna1,Singh Satyapaul A.1,Sreedhar Inkollu1

Affiliation:

1. Department of Chemical Engineering, BITS Pilani Hyderabad Campus, Hyderabad – 500078, India

Abstract

Although carbon capture methods have been applied for the last few decades due to increasing awareness of global warming and climate change, there has been a surge in the use of microwave assistance for synthesis and regeneration in carbon capture in recent years. This chapter focuses solely on microwave assistance in carbon capture and the future challenges and prospects associated with this technology in this field. Microwave assistance was found to reduce the cost involved and production time required to synthesise CO2 adsorbents, which are expensive. Similarly, the energy consumed during the regeneration of CO2 absorbents and the efficiency of this process were enhanced when microwave heating was used. In general, microwave assistance improved CO2 selectivity and capacity as it positively affected the morphology of the sorption material. Novel techniques for using naturally occurring raw materials for microwave assisted production which could lead to carbon neutral processes have also been presented. Microwave irradiation can also be used in the synthesis of materials used for membrane separation and oxyfuel combustion carbon capture. Some challenges such as the greenness of energy sources for microwave heating still remain. Having said that, this chapter clearly highlights the advantages of microwave irradiation over conventional heating methods.

Publisher

Royal Society of Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3