Electrochemical reduction of carbon dioxide with nearly 100% carbon monoxide faradaic efficiency from vacancy-stabilized single-atom active sites

Author:

Lu Chenbao1ORCID,Jiang Kaiyue1,Tranca Diana1,Wang Ning2ORCID,Zhu Hui3,Rodríguez-Hernández Fermín4,Chen Zhenying1,Yang Chongqing1,Zhang Fan1ORCID,Su Yuezeng5,Ke Changchun6,Zhang Jichao7,Han Yu3ORCID,Zhuang Xiaodong1ORCID

Affiliation:

1. The Meso-Entropy Matter Lab, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

2. Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, PR China

3. Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia

4. Departamento de Química, Universidad Autónoma de Madrid, Módulo 13, 28049 Madrid, Spain

5. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

6. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

7. Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239, Zhangheng Road, Shanghai 201204, China

Abstract

Unsaturated Ni centers are prepared through a CO2-to-carbon process and exhibit promising performance for electrochemical CO2 reduction. As cathodes in flow cells, the catalysts exhibit nearly 100% selectivity for CO formation under a high current density of 51 mA cm−2.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Science and Technology Commission of Shanghai Municipality

Publisher

Royal Society of Chemistry (RSC)

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3