Machine learning-assisted ultrafast flash sintering of high-performance and flexible silver–selenide thermoelectric devices

Author:

Saeidi-Javash Mortaza12ORCID,Wang Ke3,Zeng Minxiang14,Luo Tengfei13,Dowling Alexander W.3ORCID,Zhang Yanliang1ORCID

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

2. Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, CA 90840, USA

3. Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

4. Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA

Abstract

The first machine learning-assisted ultrafast flash sintering of flexible silver–selenide TE devices. Bayesian optimization of flash sintering variables led to a PF of 2205 μW m−1 K−2 and a zT of 1.1 at room temperature realized with a sintering time less than 1.0 second.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

U.S. Department of Energy

Publisher

Royal Society of Chemistry (RSC)

Subject

Pollution,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3