Covalent Modifications of Nucleic Acids and Their Repair

Author:

Blackburn G. Michael1

Affiliation:

1. Krebs Institute, School of Biosciences, University of Sheffield Sheffield S10 2TN UK g.m.blackburn@sheffield.ac.uk

Abstract

The main DNA repair processes in humans involve direct repair (DR), base excision repair (BER), nucleotide excision repair (NER), interstrand crosslink repair (ICR) and base mismatch repair (BMR), as have been described in other chapters, in addition to homologous recombination (HR) and non-homologous end-joining (NHEJ). Studies on human repair systems have advanced rapidly, especially into UV damage, and recent studies have shown that human DNA polymerase η (Pol η) modulates susceptibility to skin cancer by promoting DNA synthesis past sunlight-induced cyclobutane pyrimidine dimers that have escaped nucleotide excision repair (NER). This bypass has low fidelity, meaning that in normal people, and especially in individuals with xeroderma pigmentosum who accumulate photodimers because they are NER-defective, the errors made by Pol η during dimer bypass may contribute to mutagenesis and to skin cancer. The depth of understanding that is now being achieved on the covalent modification of nucleic acids is awesome, both for adventitious (exogenous) and evolutionarily evolved (endogenous) modification. It is uncovering new questions and posing new challenges. A clear manifestation of this is the range of targets that have now been explored using cutting-edge methodologies that were unimaginable in earlier years. Above all, the advances made have brought us face-to-face with the amazing complexity of repair systems for our nucleic acids that supremely have made viable life on our planet.

Publisher

The Royal Society of Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3