Copper-binding energetics of amicyanin in different folding states

Author:

Jeoung Seounghun1,Shin Sooim12,Choi Moonsung34ORCID

Affiliation:

1. Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, College of Engineering, Chonnam National University, Gwangju 61186, Republic of Korea

2. Department of Bioengineering and Biotechnology, College of Engineering, Chonnam National University, Gwangju 61186, Republic of Korea

3. Department of Optometry, College of Energy and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

4. Convergence Institute of Biomaterials and Bioengineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

Abstract

Abstract Amicyanin is a type I copper protein that mediates electron transfer between methylamine dehydrogenase and cytochrome c-551i for energy production in Paracoccus denitrificans. Although the Met98 axial ligand of amicyanin has been shown to dictate metal selectivity and specificity during protein folding, the mechanism involved in copper-mediated amicyanin folding is unknown. Here, we kinetically and spectroscopically described reaction steps for incorporating copper into fully and less folded apo-amicyanin and established thermodynamic parameters for two amicyanin folding states. The rate constant for the incorporation of copper into fully folded apo-amicyanin at 25 °C was almost 1.5-fold lower than that for the initial phase of copper addition to the less folded apo-amicyanin. However, the rate constant was 10-fold higher than that of the second phase of copper addition to less folded apo-amicyanin at 25 °C. When overall binding energetic parameters (ΔH° and ΔS°) for the incorporation of copper into fully folded apo-amicyanin were measured by the van’t Hoff method and isothermal titration calorimetry, the values were more positive than those determined for less folded apo-amicyanin. This indicates that during amicyanin biogenesis, copper rapidly binds to an unfolded apo-amicyanin active site, inducing protein folding and favorably influencing subsequent organization of copper ligands.

Funder

National Research Foundation of Korea

Small and Medium Business Administration

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

Reference23 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3