Mesoporous Ni/Ce1−xNixO2−y heterostructure as an efficient catalyst for converting greenhouse gas to H2 and syngas
Author:
Affiliation:
1. Department of Chemical Engineering
2. Sichuan University
3. Chengdu 610065
4. China
5. University of Queensland
6. Brisbane 4067
7. Australia
Abstract
A heterostructure of highly dispersed Ni nanoparticles in pore channels of Ni–CeO2 solid solution, having excellent thermo-stability, redox properties, and metal/support synergy, is identified as an efficient nanocatalyst for converting greenhouse gas into H2 energy and syngas.
Funder
National Natural Science Foundation of China
Publisher
Royal Society of Chemistry (RSC)
Subject
Catalysis
Link
http://pubs.rsc.org/en/content/articlepdf/2016/CY/C5CY00893J
Reference78 articles.
1. Energy-Efficient Syngas Production through Catalytic Oxy-Methane Reforming Reactions
2. CO2Recycling: A Key Strategy to Introduce Green Energy in the Chemical Production Chain
3. Oxygen Vacancy Engineering of Cerium Oxides for Carbon Dioxide Capture and Reduction
4. The role of Mn doping in CeO2 for catalytic synthesis of aliphatic carbamate from CO2
5. Yttrium oxide modified Cu/ZnO/Al2O3catalysts via hydrotalcite-like precursors for CO2hydrogenation to methanol
Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Synergistic Effects of In-Situ Exsolved Ni–Ru Bimetallic Catalyst on High-Performance and Durable Direct-Methane Solid Oxide Fuel Cells;Journal of the American Chemical Society;2024-01-26
2. Resolving a structural issue in cerium-nickel-based oxide: a single compound or a two-phase system?;Dalton Transactions;2024
3. Optimized methane combustion behavior by engineering dual oxygen defect structures between Co3O4 and MOF-derived Ce1-xLaxO2-δ solid solution;International Journal of Hydrogen Energy;2024-01
4. Effect of surface curvature on the hydrogen storage capacity of the Sc-, Ti-, and V-doped graphene surfaces: Theoretical study;Diamond and Related Materials;2023-11
5. Process-intensified protonic ceramic fuel cells for power generation, chemical production, and greenhouse gas mitigation;Joule;2023-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3