Identification of the biliary selenium metabolite and the biological significance of selenium enterohepatic circulation

Author:

Takahashi Kazuaki1ORCID,Ogra Yasumitsu1ORCID

Affiliation:

1. Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan. Fax: +81 43 226 2944; Tel: +81 43 226 2944

Abstract

Abstract Although selenium (Se) is mainly excreted in urine, it has been reported that an unknown Se metabolite is excreted in bile. When we administered selenomethionine (SeMet), selenocyanate or selenite to rats, a common biliary selenometabolite was detected 10 min after administration. The amount of the selenometabolite originating from SeMet was less than that originating from the two inorganic Se compounds, selenocyanate and selenite, suggesting that the transformation from the methylated organic selenocompound, i.e., SeMet, was less efficient than that from the inorganic Se compounds. The common biliary selenometabolite was concretely identified as selenodiglutathione (GSSeSG) by two types of mass spectrometry, i.e., LC-inductively coupled mass spectrometry (ICP-MS) and LC-ESI-Q/TOF. The bile-drained rats had lower urinary Se levels than the sham-operated rats. In addition, the Se amounts in urine plus bile of the bile-drained rats were comparable to the Se amount in the urine of the sham-operated rats. These results suggest that the biliary selenometabolite, GSSeSG, was reabsorbed in the gut and finally excreted in urine. Enterohepatic circulation occurs to maintain Se status in the body.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metabolism and Anticancer Mechanisms of Selocompounds: Comprehensive Review;Biological Trace Element Research;2022-11-07

2. FXR expression in rats of hilar cholangiocarcinoma;Scientific Reports;2022-05-24

3. Cysteine-Activated Small-Molecule H2Se Donors Inspired by Synthetic H2S Donors;Journal of the American Chemical Society;2022-02-22

4. NTCP Change in Rats of Hilar Cholangiocarcinoma and Therapeutic Significance;Technology in Cancer Research & Treatment;2022-01

5. Synthesis and catalytic functions of selenopeptides;Organochalcogen Compounds;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3