Superbat: battery-like supercapacitor utilized by graphene foam and zinc oxide (ZnO) electrodes induced by structural defects
Author:
Affiliation:
1. SUNUM Nanotechnology Research Centre
2. Sabanci University
3. TR-34956 Istanbul
4. Turkey
5. Faculty of Engineering and Natural Sciences
6. Institute of Physical Chemistry
7. University of Freiburg
8. 79104 Freiburg
9. Germany
Abstract
The current work presents a hybrid type of energy storage device composed of both graphene foam and zinc oxide electrodes, which exhibits both the electrochemical performance of a supercapacitor with a relatively higher power density, and a battery with a relatively higher energy density as compared to each individual component as single devices.
Publisher
Royal Society of Chemistry (RSC)
Subject
General Engineering,General Materials Science,General Chemistry,Atomic and Molecular Physics, and Optics,Bioengineering
Link
http://pubs.rsc.org/en/content/articlepdf/2019/NA/C9NA00199A
Reference66 articles.
1. Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems
2. Efficient storage mechanisms for building better supercapacitors
3. Where Do Batteries End and Supercapacitors Begin?
4. Synergetic effects of Fe3+ doped spinel Li4Ti5O12 nanoparticles on reduced graphene oxide for high surface electrode hybrid supercapacitors
5. High-Capacitance Hybrid Supercapacitor Based on Multi-Colored Fluorescent Carbon-Dots
Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Exploring two decades of graphene: The jack of all trades;Applied Materials Today;2024-02
2. Nitrogen-Doped WO3 Nanoparticles as Electrode Materials in All-in-One Supercapacitor Devices;ACS Applied Engineering Materials;2024-01-10
3. Ultrahigh-energy-density supercapacitors based on all-pseudocapacitive binary metal sulfide–MXene composites;Journal of Materials Chemistry A;2024
4. Electric field-assisted laser ablation fabrication and assembly of zinc oxide/carbon nanocomposites into hierarchical structures for supercapacitor electrodes;Nanoscale;2024
5. Unlocking enhanced electrochemical performance of SnO2-Bi2WO6 nanoflowers for advanced supercapacitor device;Journal of Alloys and Compounds;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3