Predicting the performance and stability parameters of energetic materials (EMs) using a machine learning-based q-RASPR approach
Author:
Affiliation:
1. Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology Jadavpur University, Kolkata 700032, India
Abstract
Funder
All India Council for Technical Education
Publisher
Royal Society of Chemistry (RSC)
Link
http://pubs.rsc.org/en/content/articlepdf/2024/YA/D4YA00215F
Reference57 articles.
1. J. P.Agrawal , High Energy Materials: Propellants, Explosives and Pyrotechnics , John Wiley & Sons , 2010
2. Design and Synthesis of Energetic Materials
3. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications
4. Simple correlation for predicting detonation velocity of ideal and non-ideal explosives
5. Prediction of Detonation Velocity and N−O Composition of High Energy C−H−N−O Explosives by Means of Artificial Neural Networks
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. How to correctly develop q-RASAR models for predictive cheminformatics;Expert Opinion on Drug Discovery;2024-07-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3