Heterostructured metal oxides realized by quenching-induced structural transformation

Author:

Ye Changchun1ORCID,Pan Zhenghui2,Zhang Qinghua3,Yin Fang4,Wang Yanan35,Li Yifei1,Chen Guangxu1ORCID,Li Jia4,Qiu Yongcai1ORCID,Waterhouse Geoffrey I. N.6ORCID,Gu Lin3ORCID,Lin Zhang7ORCID,Guo Lin8ORCID

Affiliation:

1. School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510000, Guangdong, China

2. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

3. Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Laboratory of Advanced Materials and Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China

4. Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

5. Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China

6. School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand

7. School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China

8. School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China

Abstract

A multiple quenching strategy is developed to prepare heterostructured NiMoO4/NiFe2O4 catalyst by in situ structural transforming small size (<27 nm) NiMoO4 to NiFe2O4, thus delivering significant OER/ORR catalytic activity in zinc–air batteries.

Funder

Guangdong Innovative and Entrepreneurial Research Team Program

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Guangdong Provincial Pearl River Talents Program

Publisher

Royal Society of Chemistry (RSC)

Subject

Pollution,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3