Inertial effective mass as an effective descriptor for thermoelectrics via data-driven evaluation
Author:
Affiliation:
1. Institute of Materials Research and Engineering
2. Agency for Science
3. Technology and Research
4. Singapore 138634
5. Department of Chemistry
6. NUS Graduate School for Integrative Sciences and Engineering
Abstract
Data-driven analysis shows that low effective mass is favorable for high band degeneracy and power factor towards new thermoelectric materials.
Funder
Science and Engineering Research Council
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2019/TA/C9TA05967A
Reference45 articles.
1. Material descriptors for predicting thermoelectric performance
2. Effective mass and Fermi surface complexity factor from ab initio band structure calculations
3. High Three-Dimensional Thermoelectric Performance from Low-Dimensional Bands
4. Thermoelectric Performance of IV-VI Compounds with Octahedral-Like Coordination: A Chemical-Bonding Perspective
5. Importance of non-parabolic band effects in the thermoelectric properties of semiconductors
Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Ab initio investigation of Co-(V,Nb)–Sn Heusler alloys for thermoelectric applications;Physica B: Condensed Matter;2024-10
2. Advances in theoretical calculations of organic thermoelectric materials;Chinese Chemical Letters;2024-08
3. Enhancement of thermoelectric performance by stacking fault control in (GeTe)1-x(Bi2Te3)x compounds, synthesized by hot press sintering method;Materials Chemistry and Physics;2024-08
4. Hierarchical nano-/micro-architecture phonon scattering of p-type Bismuth telluride bulk composites with Ag-TiO2 nano particles synthesized by fluidized bed spray coating method;Journal of Alloys and Compounds;2024-04
5. Multiple conduction bands with strong valley anisotropy yielding ultrahigh thermoelectric power factors in n-type elemental Ge;Materials Today Physics;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3