Novel bifunctional catalysts based on crystalline multi-oxide matrices containing iron ions for CO2 hydrogenation to liquid fuels and chemicals

Author:

Utsis N.12345,Vidruk-Nehemya R.12345,Landau M. V.12345,Herskowitz M.12345

Affiliation:

1. Chemical Engineering Department

2. Blechner Center for Industrial Catalysis and Process Development

3. Ben-Gurion University of the Negev

4. Beer-Sheva

5. Israel

Abstract

Seven solid mono-, bi- and tri-metallic oxide matrices where Fe(2+,3+) ions are distributed in different chemical/spatial environments were synthesized and characterized by XRD, N2-adsorption and EDAX methods. After basification with potassium, all matrices were activated by carburization or reduction–carburization under conditions selected based on the TPC/TPR spectra, tailoring the carburization extent of iron. The performances of the activated Fe-based catalysts with respect to CO2 conversion and C5+ selectivity were measured in a fixed-bed reactor under standard conditions in transient and continuous operation modes in units containing one or three reactors in series with water separations between the reactors. The catalysts were characterized by XRD, N2-adsorption, HRTEM-EELS and XPS before and after steady-state operation in the reactors. It was found that the rate of CO2 conversion is not limited by thermodynamic equilibrium but is strongly restricted by water inhibition and it depends on the nature of the Fe-oxide precursor. The ratio between the FTS and RWGS rates, which determines the C5+ hydrocarbons productivity, is strongly affected by the nature of the Fe-oxide matrix. The catalysts derived from the Fe–Al–O spinel and Fe–Ba–hexaaluminate precursors displayed the best balance of the two functions RFTS/RRWGS = 0.77–0.78. They were followed by magnetite, CuFe–delafossite, K–ferrite, Fe–La–hexaaluminate and LaFe–perovskite with a gradual lowering of RFTS/RRWGS from 0.60 to 0.15 and a gradual decrease in the C5+ productivity. The active sites that enhance the RWGS reaction are located on the surface of the Fe-oxide phases, while the FTS and methanation reactions occur on the surface of the Fe-carbide phases.

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3