Nano-QSAR modeling for predicting biological activity of diverse nanomaterials
Author:
Affiliation:
1. Academy of Scientific and Innovative Research
2. New Delhi-110 001, India
3. Environmental Chemistry Division
4. CSIR-Indian Institute of Toxicology Research
5. Lucknow-226 001, India
Abstract
Case study-1 (diverse metal core NPs); case study-2 (similar metal core NPs); case study-3 (metal oxide NPs); case study-4 (surface modified multi-walled CNTs); case study-5 (fullerene derivatives).
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemical Engineering,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2014/RA/C4RA01274G
Reference83 articles.
1. Modeling the Cellular Uptake of Magnetofluorescent Nanoparticles in Pancreatic Cancer Cells: A Quantitative Structure Activity Relationship Study
2. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles
3. Guidance for handling and use of nanomaterials at the workplace
4. NANOMATERIALS IN THE ENVIRONMENT: BEHAVIOR, FATE, BIOAVAILABILITY, AND EFFECTS
5. Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes
Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Automated machine learning in nanotoxicity assessment: A comparative study of predictive model performance;Computational and Structural Biotechnology Journal;2024-12
2. Identification of structural features of surface modifiers in engineered nanostructured metal oxides regarding cell uptake through ML-based classification;Beilstein Journal of Nanotechnology;2024-07-22
3. The rat acute oral toxicity of trifluoromethyl compounds (TFMs): a computational toxicology study combining the 2D-QSTR, read-across and consensus modeling methods;Archives of Toxicology;2024-04-16
4. Advancing Predictive Risk Assessment of Chemicals via Integrating Machine Learning, Computational Modeling, and Chemical/Nano‐Quantitative Structure‐Activity Relationship Approaches;Advanced Intelligent Systems;2024-02-14
5. Harmonization Risks and Rewards: Nano-QSAR for Agricultural Nanomaterials;Journal of Agricultural and Food Chemistry;2024-02-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3