Watching the dynamics of electrons and atoms at work in solar energy conversion

Author:

Canton S. E.12345,Zhang X.6789,Liu Y.1011121314,Zhang J.15161718,Pápai M.19202122,Corani A.23121314,Smeigh A. L.24252614,Smolentsev G.2728,Attenkofer K.29309,Jennings G.6789,Kurtz C. A.6789,Li F.31323318,Harlang T.23121314,Vithanage D.23121314,Chabera P.23121314,Bordage A.3435363738,Sun L.1039404114,Ott S.24252614,Wärnmark K.1011121314,Sundström V.23121314

Affiliation:

1. IFG Structural Dynamics of (Bio)chemical Systems

2. Max Planck Institute for Biophysical Chemistry

3. Germany

4. FS-SCS, Structural Dynamics with Ultra-short Pulsed X-rays

5. Deutsches Elektronensynchrotron DESY

6. X-ray Sciences Division

7. Argonne National Laboratory

8. Argonne

9. USA

10. Department of Chemistry

11. Centre for Analysis and Synthesis

12. Lund University

13. S-22100 Lund

14. Sweden

15. School of Environmental and Chemical Engineering

16. Tianjin Polytechnic University

17. Tianjin 300387

18. China

19. Wigner Research Centre for Physics

20. Hungarian Academy Sciences

21. H-1525 Budapest

22. Hungary

23. Department of Chemical Physics

24. Department of Chemistry-Ångström Laboratory

25. Uppsala University

26. S-75120 Uppsala

27. Paul Scherrer Institute

28. Switzerland

29. Photon Science Directorate

30. Brookhaven National Laboratory

31. State Key Laboratory of Fine Chemicals

32. Dalian University of Technology

33. Dalian 116024

34. Institut de Chimie Moléculaire et des Matériaux d'Orsay

35. Université Paris-Sud

36. UMR CNRS 8182

37. 91405 Orsay Cedex

38. France

39. School of Chemical Science and Engineering

40. KTH Royal Institute of Technology

41. 10044 Stockholm

Abstract

The photochemical reactions performed by transition metal complexes have been proposed as viable routes towards solar energy conversion and storage into other forms that can be conveniently used in our everyday applications. In order to develop efficient materials, it is necessary to identify, characterize and optimize the elementary steps of the entire process on the atomic scale. To this end, we have studied the photoinduced electronic and structural dynamics in two heterobimetallic ruthenium–cobalt dyads, which belong to the large family of donor–bridge–acceptor systems. Using a combination of ultrafast optical and X-ray absorption spectroscopies, we can clock the light-driven electron transfer processes with element and spin sensitivity. In addition, the changes in local structure around the two metal centers are monitored. These experiments show that the nature of the connecting bridge is decisive for controlling the forward and the backward electron transfer rates, a result supported by quantum chemistry calculations. More generally, this work illustrates how ultrafast optical and X-ray techniques can disentangle the influence of spin, electronic and nuclear factors on the intramolecular electron transfer process. Finally, some implications for further improving the design of bridged sensitizer-catalysts utilizing the presented methodology are outlined.

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3