Predictive proteochemometric models for kinases derived from 3D protein field-based descriptors

Author:

Subramanian Vigneshwari12345,Prusis Peteris1234,Xhaard Henri56784,Wohlfahrt Gerd1234

Affiliation:

1. Computer-Aided Drug Design

2. Orion Pharma

3. FI-02101 Espoo

4. Finland

5. Division of Pharmaceutical Chemistry and Technology

6. Faculty of Pharmacy

7. University of Helsinki

8. FI-00014 Helsinki

Abstract

Proteochemometric models of kinases derived from protein fields and ligand 4-point pharmacophoric fingerprints are predictive and visually interpretable.

Publisher

Royal Society of Chemistry (RSC)

Subject

Pharmaceutical Science,Biochemistry,Drug Discovery,Molecular Medicine,Pharmacology,Organic Chemistry

Reference30 articles.

1. Kinase Drug Discovery – What’s Next in the Field?

2. US Food and Drug Administration approved small molecule protein kinase inhibitors, http://www.brimr.org/PKI/PKIs.htm

3. A small molecule–kinase interaction map for clinical kinase inhibitors

4. PLS modeling of chimeric MS04/MSH-peptide and MC1/MC3-receptor interactions reveals a novel method for the analysis of ligand–receptor interactions

5. J. E. S. Wikberg , M.Lapinsh and P.Prusis, Chemogenomics in Drug Discovery: A Medicinal Chemistry Perspective, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2004, pp. 289–309

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An industrial evaluation of proteochemometric modelling: Predicting drug-target affinities for kinases;Artificial Intelligence in the Life Sciences;2023-12

2. Mold2 Descriptors Facilitate Development of Machine Learning and Deep Learning Models for Predicting Toxicity of Chemicals;Machine Learning and Deep Learning in Computational Toxicology;2023

3. Unsupervised Representation Learning for Proteochemometric Modeling;International Journal of Molecular Sciences;2021-11-28

4. Hit discovery;The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry;2021

5. Energetic contributions of amino acid residues and its cross‐talk to delineate ligand‐binding mechanism;Proteins: Structure, Function, and Bioinformatics;2020-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3