A time and resource efficient machine learning assisted design of non-fullerene small molecule acceptors for P3HT-based organic solar cells and green solvent selection
Author:
Affiliation:
1. Key Laboratory of Cluster Science of Ministry of Education
2. Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
3. School of Chemistry and Chemical Engineering
4. Beijing Institute of Technology
5. Beijing
Abstract
A time and money efficient machine learning assisted design of non-fullerene small molecule acceptors for P3HT based organic solar cells is reported. Green solvents are also selected using machine learning predicted Hansen solubility parameters.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2021/TA/D1TA04742F
Reference86 articles.
1. Achieving 17.38% efficiency of ternary organic solar cells enabled by a large-bandgap donor with noncovalent conformational locking
2. Designing a naphthyridinedione-based conjugated polymer for thickness-tolerant high efficiency polymer solar cells
3. A Synergistic Strategy of Manipulating the Number of Selenophene Units and Dissymmetric Central Core of Small Molecular Acceptors Enables Polymer Solar Cells with 17.5 % Efficiency
4. Narrow band-gap materials with overlapping absorption simultaneously increase the open circuit voltage and average visible transmittance of semitransparent organic solar cells
5. Indacenodithiophene-based N-type conjugated polymers provide highly thermally stable ternary organic photovoltaics displaying a performance of 17.5%
Cited by 163 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Designing of small molecule donors with the help of machine learning for organic solar cells and performance prediction;Journal of Photochemistry and Photobiology A: Chemistry;2025-02
2. Polymer design with enhanced crystallization tendency aided by machine learning;Physica B: Condensed Matter;2024-12
3. Machine learning assisted designing of low bandgap indacenodithiophene (IDT)-based organic semi-conductors;Journal of Photochemistry and Photobiology A: Chemistry;2024-12
4. An innovative approach to design readily synthesizable polymers for all-polymer solar cells;Chemical Physics;2024-10
5. Clinical translation of nanomedicine with integrated digital medicine and machine learning interventions;Colloids and Surfaces B: Biointerfaces;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3