Efficient sampling of high-energy states by machine learning force fields
Author:
Affiliation:
1. Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences
2. 30-239 Krakow
3. Poland
4. Department of Biopharmacy
5. Medical University of Lublin Chodźki 4a
6. 20-093 Lublin
Abstract
A method extending the range of applicability of machine-learning force fields is proposed. It relies on biased subsampling of the high-energy states described by the predefined coordinate(s).
Funder
Narodowe Centrum Nauki
Publisher
Royal Society of Chemistry (RSC)
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Link
http://pubs.rsc.org/en/content/articlepdf/2020/CP/D0CP01399D
Reference51 articles.
1. Machine learning for molecular and materials science
2. Deep learning for molecular design—a review of the state of the art
3. Recent advances and applications of machine learning in solid-state materials science
4. Machine learning for potential energy surfaces: An extensive database and assessment of methods
5. Potential Energy Surfaces Fitted by Artificial Neural Networks
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Atomic-scale simulations in multi-component alloys and compounds: A review on advances in interatomic potential;Journal of Materials Science & Technology;2023-12
2. Machine learning accelerates quantum mechanics predictions of molecular crystals;Physics Reports;2021-11
3. Four Generations of High-Dimensional Neural Network Potentials;Chemical Reviews;2021-03-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3