Magnetically-accelerated large-capacity solar-thermal energy storage within high-temperature phase-change materials
Author:
Affiliation:
1. State Key Laboratory of Metal Matrix Composites
2. School of Materials Science and Engineering
3. Shanghai Jiao Tong University
4. Shanghai
5. China
6. University of Michigan-Shanghai Jiao Tong University Joint Institute
7. Shanghai 200240
Abstract
Magnetically-accelerated optical charging doubles solar-thermal energy harvesting rates while fully maintaining the storage capacity of high-temperature molten salt phase change materials.
Funder
National Natural Science Foundation of China
Shanghai Municipal Education Commission
Shanghai Education Development Foundation
Publisher
Royal Society of Chemistry (RSC)
Subject
Pollution,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2019/EE/C9EE00542K
Reference49 articles.
1. Research opportunities to advance solar energy utilization
2. A review of solar thermal technologies☆
3. Solar steam generation by heat localization
4. Steam generation under one sun enabled by a floating structure with thermal concentration
5. Solar-driven interfacial evaporation
Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Highly graphitized carbon foam to construct phase change materials composites for multiple solar−thermal energy conversion;Solar Energy Materials and Solar Cells;2024-10
2. Evaluation of the energy flow characteristics and efficiency of photothermal functional phase change materials for efficient solar thermal harvesting;Solar Energy Materials and Solar Cells;2024-10
3. Optically manipulated nitrate-salt-based direct absorption solar collectors for a photothermal energy harvesting system;Chemical Engineering Journal;2024-10
4. Preparation of Al Si microcapsules with high latent heat and durability via control of shell thickness;Journal of Energy Storage;2024-10
5. Nanoclay Hybridized Graphene Aerogels Encapsulating Phase Change Material for Efficient Solar‐Driven Desalination and Electricity Generation;Advanced Functional Materials;2024-08-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3