Anchoring ultrafine Pt nanoparticles on the 3D hierarchical self-assembly of graphene/functionalized carbon black as a highly efficient oxygen reduction catalyst for PEMFCs
Author:
Affiliation:
1. Fuel Cell System and Engineering Laboratory
2. Dalian Institute of Chemical Physics
3. Chinese Academy of Sciences
4. Dalian
5. China
Abstract
Ultrafine Pt nanoparticles decorated 3D graphene-based hierarchical architecture demonstrates superior electrochemical performance in fuel cell.
Funder
National Natural Science Foundation of China
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2018/TA/C8TA02453G
Reference51 articles.
1. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation
2. Active sites and factors influencing them for efficient oxygen reduction reaction in metal-N coordinated pyrolyzed and non-pyrolyzed catalysts: a review
3. Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction
4. A unique approach to designing resilient bi-functional nano-electrocatalysts based on ultrafine bimetallic nanoparticles dispersed in carbon nanospheres
5. Pt nanoparticles grown on 3D RuO2-modified graphene architectures for highly efficient methanol oxidation
Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Modulating triple phase boundary of oxygen reduction reaction catalyst for fast activation of proton exchange membrane fuel cell;International Journal of Hydrogen Energy;2024-10
2. Functionalized carbons and Pt/C catalysts from biomass using a plasma process;Chemical Engineering Journal;2024-09
3. Nanostructure Engineering of Cathode Layers in Proton Exchange Membrane Fuel Cells: From Catalysts to Membrane Electrode Assembly;ACS Nano;2024-04-26
4. N-doped hollow carbon nanospheres embedded in N-doped graphene loaded with palladium nanoparticles as an efficient electrocatalyst for formic acid oxidation;New Carbon Materials;2024-04
5. Chemical activation and catalytic graphitization enable a durable and active Pt/C for low platinum fuel cell;International Journal of Hydrogen Energy;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3