Facile synthesis of N-doped porous carbon encapsulated bimetallic PdCo as a highly active and durable electrocatalyst for oxygen reduction and ethanol oxidation
Author:
Affiliation:
1. Key Laboratory of Material Chemistry for Energy Conversion and Storage
2. Ministry of Education
3. School of Chemistry and Chemical Engineering
4. Huazhong University of Science and Technology
5. Wuhan
Abstract
A facile synthesis of ultrafine PdCo bimetallic nanoparticles confined in N-doped porous carbon nanocapsules (PdCo@NPNCs) is presented here. The PdCo@NPNCs exhibit superior electrocatalytic activity and stability towards both the oxygen reduction and ethanol oxidation reactions.
Funder
National Natural Science Foundation of China
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2017/TA/C7TA00710H
Reference53 articles.
1. Materials for fuel-cell technologies
2. Fuel Cells - Fundamentals and Applications
3. Fuel cells for portable applications
4. Electrocatalyst approaches and challenges for automotive fuel cells
5. Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Synthesis, Properties, and Applications
Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Electrocatalytic ethanol oxidation reaction: recent progress, challenges, and future prospects;Discover Nano;2024-09-03
2. Advancements in Noble Metal-Decorated Porous Carbon Nanoarchitectures: Key Catalysts for Direct Liquid Fuel Cells;ACS Nano;2024-04-04
3. Strain Engineering of Cd0.5Zn0.5S Nanocrystal for Efficient Photocatalytic Hydrogen Evolution from Wasted Plastic;Small;2024-03-10
4. In situ confined synthesis of an interlayer-riveted carbon shell encapsulated PdZnBi alloy as a highly active and durable oxygen reduction reaction catalyst;Journal of Materials Chemistry A;2024
5. Rational Design of Ruthenium/Cobalt Nanoparticles Embedded in Nitrogen-Doped Carbon Frameworks as a Multifunctional Nanozyme for Dopamine Detection and Organic Pollutant Degradation;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3