Di(p-methoxyphenyl)amine end-capped tri(p-thiophenylphenyl)amine based molecular glasses as hole transporting materials for solid-state dye-sensitized solar cells
Author:
Affiliation:
1. Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI)
2. Université de Cergy-Pontoise
3. Neuville-sur-Oise
4. France
5. Univ. Bordeaux
6. IMS
7. UMR 5218
8. F-33607 Pessac
Abstract
Star shaped hole conducting molecular glasses were synthetized and applied in solid state dye-sensitized solar cells.
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemical Engineering,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2015/RA/C5RA07226C
Reference38 articles.
1. Molecular Materials for Organic Photovoltaics: Small is Beautiful
2. Carbazol-N-yl and diphenylamino end-capped triphenylamine-based molecular glasses: synthesis, thermal, and optical properties
3. Matériaux de transport de trous à base de petites molécules organiques pour cellules photovoltaïques hybrides solides
4. Recent advances in small molecular, non-polymeric organic hole transporting materials for solid-state DSSC
5. Carbazole-based molecular glasses for efficient solid-state dye-sensitized solar cells
Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Analyzing the compatibility and optimization of organic and Al2CdX4 chalcogenides materials as charge transport layers for planar and inverted MASnI3 perovskites;Optical Materials;2024-08
2. Utilizing Density Functional Theory and SCAPS Simulations for Modeling High‐Performance MASnI3‐Based Perovskite Solar Cells;Energy Technology;2024-01-16
3. Capturing Mobile Lithium Ions in a Molecular Hole Transporter Enhances the Thermal Stability of Perovskite Solar Cells;Advanced Materials;2021-02-19
4. The improvement of photovoltaic performance of quinoline-based dye-sensitized solar cells by modification of the auxiliary acceptors;Journal of Photochemistry and Photobiology A: Chemistry;2021-01
5. A study on the high efficiency reduction of p-nitrophenol (4-NP) by a Fe(OH)3/Fe2O3@Au composite catalyst;RSC Advances;2021
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3