Visualizing a core–shell structure of heavily doped silicon quantum dots by electron microscopy using an atomically thin support film
Author:
Affiliation:
1. Department of Electrical and Electronic Engineering
2. Graduate School of Engineering
3. Kobe University
4. Kobe 657-8501
5. Japan
Abstract
We successfully visualize a core–shell structure of a heavily B and P codoped Si quantum dot (QD) by transmission electron microscopy using an ultra-thin graphene oxide support film.
Funder
Japan Science and Technology Agency
Japan Society for the Promotion of Science
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science
Link
http://pubs.rsc.org/en/content/articlepdf/2018/NR/C7NR09474D
Reference59 articles.
1. Colloidal quantum dot solar cells
2. Emergence of colloidal quantum-dot light-emitting technologies
3. Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy
4. Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures
5. (CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites
Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Single-Nanometer-Sized Boron and Phosphorus Co-Doped Silicon Nanoparticles for Negative Electrode of Lithium-Ion Batteries;ACS Applied Nano Materials;2023-12-11
2. Self-organized Ge1−x Sn x quantum dots formed on insulators and their room temperature photoluminescence;Japanese Journal of Applied Physics;2023-07-01
3. Characteristics and Electrochemical Performance of Hydroxyl-Functionalized Graphene Quantum Dot-Coated Si Nanoparticles/Reduced Graphene Hybrid Anodes for Advanced Li-Ion Batteries;Journal of Nanomaterials;2023-05-18
4. Electron spin resonance in P-doped Si nanocrystals/SiC stacked structures with various dot sizes;Applied Surface Science;2023-03
5. Study on luminescence quenching of ultra-small silicon nanocrystals due to boron doping;Optical Materials Express;2022-09-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3