Examining learning of atomic level ideas about precipitation reactions with a resources framework

Author:

Kelly Resa M.1ORCID,Akaygun Sevil2ORCID,Hansen Sarah J. R.3ORCID,Villalta-Cerdas Adrian4,Adam Jonathan1

Affiliation:

1. Chemistry Department, San José State University, San José, CA 95192, USA

2. Department of Mathematics and Science Education, Bogazici University, Istanbul 34342, Turkey

3. Department of Chemistry, Columbia University, New York, NY 10027, USA

4. Department of Chemistry, Sam Houston State University, Huntsville, TX 77340, USA

Abstract

One particular challenge in chemistry learning is developing students’ atomic level understanding of chemical processes. It is necessary to help students learn how to critique atomic models rather than accept them as “truth.” In this study, we used a resources-based framework to examine how students made sense of macroscopic level information to account for what was happening at the atomic level. We interviewed 20 students enrolled in the first semester of general chemistry. Each student completed three exercises. The first exercise involved a card sorting task and the second exercise involved constructing an atomic model to learn how students made sense of the atomic level of a reaction involving the mixing of aqueous silver nitrate and aqueous sodium chloride to produce a precipitate. Next, students engaged in an exercise in which they were shown three conflicting atomic level animations of the same experiment and they were charged with selecting the animation that was most scientifically accurate. We analyzed the general patterns of characterization that emerged when students engaged in the card sorting and modeling exercise and the conflicting animation exercise using a resources framework. We contend that students apply and sometimes misapply knowledge resources to make sense of the atomic level. The process affects decisions that they make and stances that they develop about the accuracy of atomic level models.

Funder

National Science Foundation

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

Royal Society of Chemistry (RSC)

Subject

Education,Chemistry (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3