Push–pull architecture eliminates chain length effects on exciton dissociation
Author:
Affiliation:
1. Department of Chemical Engineering
2. The Pennsylvania State University
3. USA
4. Department of Materials Science
Abstract
Push–pull architecture decreases the required conjugation length to achieve efficient charge transfer and enables single-site exciton dissociation.
Funder
Office of Naval Research
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2018/TA/C8TA05782F
Reference113 articles.
1. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells
2. Dithieno[3,2-b :2′,3′-d ]pyrrol Fused Nonfullerene Acceptors Enabling Over 13% Efficiency for Organic Solar Cells
3. A High‐Efficiency Organic Solar Cell Enabled by the Strong Intramolecular Electron Push–Pull Effect of the Nonfullerene Acceptor
4. Tackling Energy Loss for High-Efficiency Organic Solar Cells with Integrated Multiple Strategies
5. High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Is the polarization of the CC bond imperative for bifunctional outer-sphere CC hydrogenation?;Organic Chemistry Frontiers;2023
2. Tailoring the acceptor moiety of novel thiophene-based chromophores: Conjoined experimental and theoretical study on the nonlinear optical properties;Dyes and Pigments;2021-12
3. A molecular tailoring approach – a new guide to quantify the energy of push–pull effects: a case study on (E)-3-(1H-pyrrol-2-yl)prop-2-enones;Physical Chemistry Chemical Physics;2020
4. Donor–acceptor type conjugated copolymers based on alternating BNBP and oligothiophene units: from electron acceptor to electron donor and from amorphous to semicrystalline;Journal of Materials Chemistry A;2020
5. Revealing the Importance of Energetic and Entropic Contributions to the Driving Force for Charge Photogeneration;ACS Applied Materials & Interfaces;2018-10-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3