Ultra-fast shock-wave combustion synthesis of nanostructured silicon from sand with excellent Li storage performance
Author:
Affiliation:
1. Energy and Environmental Materials Research Centre
2. School of Metallurgy
3. Northeastern University
4. Shenyang 11089
5. China
6. Department of Materials Science and Engineering
7. Yonsei University
8. Seoul 120-749
9. Republic of Korea
Abstract
A novel shock-wave combustion synthesis method was developed for ultra-scalable, clean and energy efficient conversion of sand to nanostructured silicon with excellent performance as an anode material for Li-ion batteries.
Funder
National Natural Science Foundation of China
Publisher
Royal Society of Chemistry (RSC)
Subject
Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Link
http://pubs.rsc.org/en/content/articlepdf/2019/SE/C9SE00046A
Reference72 articles.
1. F. Seitz and N. G.Einspruch , Electronic Genie: The Tangled History of Silicon , University of Illinois Press , Urbana and Chicago , 1998
2. Review of status developments of high-efficiency crystalline silicon solar cells
3. Silicon based lithium-ion battery anodes: A chronicle perspective review
4. Rational Design of Three‐Layered TiO 2 @Carbon@MoS 2 Hierarchical Nanotubes for Enhanced Lithium Storage
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Si-P-Cu internally bonded anode: An innovative strategy for low-cost and high-performance pseudocapacitive Li-ion storage;Journal of Energy Storage;2024-10
2. Triggering inert desert sand toward a low-cost and efficient cocatalyst for photocatalytic hydrogen evolution reactions;Green Chemistry;2024
3. Si-P-Cu Internally Bonded Anode for Low-Cost and High-Performance Pseudocapacitive Li-Ion Storage;2024
4. Silicon-thermally modified polyimide with optimized charge transfer complex structure for enhanced Li-ion storage;Journal of Energy Storage;2023-12
5. Toward improved sustainability in lithium ion batteries using bio-based materials;Trends in Chemistry;2023-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3