Affiliation:
1. Department of Physiology, Johns Hopkins University, Baltimore, MD, USA
2. Don Carlo Gnocchi ONLUS Foundation, Milan, Italy
3. IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Italy
Abstract
Abstract
Single nucleotide polymorphisms (SNPs) are the largest source of sequence variation in the human genome. However, their functional significance is not well understood. We show that SNPs in the Wilson disease gene, ATP7B, that produce amino-acid substitutions K832R and R952K, modulate ATP7B properties in vitro and influence serum copper (Cu) status in vivo. The presence of R832 is associated with a lower ATP7B abundance and a diminished trafficking in response to elevated Cu. The K832R substitution alters surface exposure of amino acid residues in the actuator domain and increases its conformational flexibility. All SNP-related ATP7B variants (R832/R952, R832/K952, K832/K952, and K832/R952) have Cu-transport activity. However, the activity of ATP7B-K832/K952 is lower compared to other variants. In humans, the presence of K952 is associated with a higher fraction of exchangeable Cu in serum. Thus, SNPs may modulate the properties of ATP7B and the organism Cu status.
Funder
National Institute of Diabetes and Digestive and Kidney Diseases
National Research Council
Ministero della Salute
Publisher
Oxford University Press (OUP)
Subject
Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献