Dimers of glutaredoxin 2 as mitochondrial redox sensors in selenite-induced oxidative stress

Author:

Scalcon Valeria1ORCID,Tonolo Federica1,Folda Alessandra1,Bindoli Alberto2,Rigobello Maria Pia1ORCID

Affiliation:

1. Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy

2. Istituto di Neuroscienze (CNR), Sezione di Padova, c/o Dipartimento di Scienze Biomediche, Viale G. Colombo 3, 35131 Padova, Italy

Abstract

Abstract Glutaredoxin 2 (Grx2) has been previously shown to link thioredoxin and glutathione systems receiving reducing equivalents by both thioredoxin reductase and glutathione. Grx2 catalyzes protein glutathionylation/de-glutathionylation and can coordinate an iron–sulfur cluster, forming inactive dimers stabilized by two molecules of glutathione. This protein is mainly located in the mitochondrial matrix, though other isoforms have been found in the cytosolic and nuclear cell compartments. In the present study, we have analyzed the monomeric and dimeric states of Grx2 under different redox conditions in HeLa cells, and sodium selenite was utilized as the principal oxidizing agent. After selenite treatment, an increased glutathione oxidation was associated to Grx2 monomerization and activation, specifically in the mitochondrial compartment. Interestingly, in mitochondria, a large decline of thioredoxin reductase activity was also observed concomitantly to Grx2 activity stimulation. In addition, Grx2 monomerization led to an increase free iron ions concentration in the mitochondrial matrix, induction of lipid peroxidation and decrease of the mitochondrial membrane potential, indicating that the disassembly of Grx2 dimer involved the release of the iron–sulfur cluster in the mitochondrial matrix. Moreover, sodium selenite-triggered lipid and protein oxidation was partially prevented by deferiprone, an iron chelator with mitochondriotropic properties, suggesting a role of the iron–sulfur cluster release in the observed impairment of mitochondrial functions. Thus, by sensing the overall cellular redox conditions, mitochondrial Grx2 dimers become active monomers upon oxidative stress induced by sodium selenite with the consequent release of the iron–sulfur cluster, leading to activation of the intrinsic apoptotic pathway.

Funder

Università degli Studi di Padova

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3