Bulky 4,6-disubstituted tetraphenylethene–naphthalimide dyad: synthesis, copolymerization, stimuli-responsive fluorescence and cellular imaging

Author:

Hua Qiong-Xin12345,Xin Bo12345,Liu Jun-Xia12345,Zhao Ling-Xi12345,Xiong Zu-Jing12345,Chen Tao12345,Chen Ze-Qiang12345,Li Chong12345ORCID,Gong Wen-Liang12345,Huang Zhen-Li12345,Zhu Ming-Qiang12345ORCID

Affiliation:

1. Wuhan National Laboratory for Optoelectronics

2. School of Optical and Electronic Information

3. Huazhong University of Science and Technology

4. Wuhan

5. China

Abstract

We report the design and synthesis of a tetraphenylethene substituted with naphthalimide at the 4, 6 positions, named NI-2TPE. NI-2TPE exhibits strong solvent-dependent emission properties with combined ICT and AIE characteristics in THF–H2O systems. This probe was used directly on test papers to distinguish normal organic solvents using their emission colours under UV light based on its AIE and ICT nature. Thanks to the vinyl group in NI-2TPE, we synthesized a copolymer of NIPAM and NI-2TPE, termed P(NIPAM-co-NI-2TPE). The resulting polymer is highly soluble and fluorescent in water (ΦF = 15.4%). Due to the well-known thermo-responsive character of NIPAM, P(NIPAM-co-NI-2TPE) exhibits an interesting fluorescence change in response to various temperatures. Due to the thermo-induced shrinking of the PNIPAM chain, the fluorescence intensity gradually increased from 20 to 34 °C. As the temperature further increased from 34 to 90 °C, the fluorescence intensity decreased sharply, which was caused by the well-known thermal effects. Furthermore, we synthesized a P(HEA-co-NI-2TPE–TPP acrylate) copolymer, in which HEA is a hydrophilic unit, TPP is a mitochondria label and NI-2TPE a fluorescent probe. The corresponding polymer probe is highly soluble in water with FLQY = 7% and we have further applied this probe as a mitochondria targeted imaging tracker in HeLa cells successfully.

Publisher

Royal Society of Chemistry (RSC)

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3